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A problem

Given manifolds M1 and M2, describe all homomorphisms

Diffr
c(M1)→ Diffp

c (M2)

I Diffr
c(M) = group of compactly supported C r

diffeomorphisms isotopic to the identity.

I This is a simple group [Mather, Thurston], so any nontrivial
homomorphism is necessarily injective.
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We understand isomorphisms completely

Let M1 and M2 be smooth manifolds.

Theorem (Filipkiewicz, 1982)

If ∃ an isomorphism Φ : Diffr
c(M1)→ Diffs

c(M2), then M1
∼= M2.

Also, r = s and Φ is induced by a C r diffeomorphism f : M1 → M2.

“Induced” means Φ(g) = fgf −1
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... but not homomorphisms!

Question (Ghys, 1991)

Let M1 and M2 be closed manifolds.
∃ (injective) homomorphism Diff∞(M1)0 ↪→ Diff∞(M2)0

??⇒ dim(M1) ≤ dim(M2)

I Diff∞(M)0= identity component of group of C∞

diffeomorphisms on M.

I Can also ask this for general boundaryless M and Diffr
c(M).
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Examples of homomorphisms

I M1 an open submanifold of M2, inclusion
Diffr

c(M1) ↪→ Diffr
c(M2)

I Generalization: Topologically diagonal embedding
Ui ⊂ M2 disjoint open sets,
fi : M1 → Ui ⊂ M2 diffeomorphisms.

I Special cases: M2 = M1 × N, unit tangent bundle of M1...
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(non)-Continuity

A non-continuous homomorphism R→ Diffr
c(M):

I α : R→ R
any non-continuous, injective, additive group homomorphism.

I ψt compactly supported C r flow on M.

t 7→ ψα(t)

Can this happen with Diff instead of R?
How bad can injections Diffr

c(M1)→ Diffp
c (M2) look?



(non)-Continuity

A non-continuous homomorphism R→ Diffr
c(M):

I α : R→ R
any non-continuous, injective, additive group homomorphism.

I ψt compactly supported C r flow on M.

t 7→ ψα(t)

Can this happen with Diff instead of R?
How bad can injections Diffr

c(M1)→ Diffp
c (M2) look?



(non)-Continuity

A non-continuous homomorphism R→ Diffr
c(M):

I α : R→ R
any non-continuous, injective, additive group homomorphism.

I ψt compactly supported C r flow on M.

t 7→ ψα(t)

Can this happen with Diff instead of R?
How bad can injections Diffr

c(M1)→ Diffp
c (M2) look?



(non)-Continuity

A non-continuous homomorphism R→ Diffr
c(M):

I α : R→ R
any non-continuous, injective, additive group homomorphism.

I ψt compactly supported C r flow on M.

t 7→ ψα(t)

Can this happen with Diff instead of R?
How bad can injections Diffr

c(M1)→ Diffp
c (M2) look?



(non)-Continuity

A non-continuous homomorphism R→ Diffr
c(M):

I α : R→ R
any non-continuous, injective, additive group homomorphism.

I ψt compactly supported C r flow on M.

t 7→ ψα(t)

Can this happen with Diff instead of R?
How bad can injections Diffr

c(M1)→ Diffp
c (M2) look?



(non)-Continuity

A non-continuous homomorphism R→ Diffr
c(M):

I α : R→ R
any non-continuous, injective, additive group homomorphism.

I ψt compactly supported C r flow on M.

t 7→ ψα(t)

Can this happen with Diff instead of R?

How bad can injections Diffr
c(M1)→ Diffp

c (M2) look?



(non)-Continuity

A non-continuous homomorphism R→ Diffr
c(M):

I α : R→ R
any non-continuous, injective, additive group homomorphism.

I ψt compactly supported C r flow on M.

t 7→ ψα(t)

Can this happen with Diff instead of R?
How bad can injections Diffr

c(M1)→ Diffp
c (M2) look?



Our results: small target

Theorem 1 (-)

Let r ≥ 3, p ≥ 2; M1 and M2 1-manifolds.
Every homomorphism Φ : Diffr

c(M1)→ Diffp
c (M2) is topologically

diagonal.

(And if r ≤ p, the maps fi are C r )

Theorem 2 (-)

Let M1 be any manifold; r , p,M2 as above.
∃ Φ : Diff r

c (M1)→ Diffp
c (M2) nontrivial homomorphism

⇒ dim(M1) = 1 and Φ is topologically diagonal

(This answers Ghys’ question in the dim(M2) = 1 case)
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Proof idea - theorem 1

I Algebraic (group structure) data ↔ topological data

I Continuity results

I Build fi
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Topological data ↔ algebraic data

Topology of the manifold ↔ group structure of Diff

Point x
?↔ Gx point stablizer

Open set U ↔ G U group of diffeomorphisms fixing U pointwise.
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G U is characterized by having large centralizer:

(GU commutes with anything supported here)

Fact
Let G ⊂ Diffr

c(R) be nonabelian
G has nonabelian centralizer ⇔ G pointwise fixes open U ⊂ R

Proof techniques:

I Hölder’s theorem (free actions on R)

I Kopell’s lemma (centralizers of C 2 diffeomorphisms)

*These also [mostly] work for S1, but not for general M!*
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I Hölder’s theorem (free actions on R)

I Kopell’s lemma (centralizers of C 2 diffeomorphisms)

*These also [mostly] work for S1, but not for general M!*



Corollary

For U, V open subsets of R

U,V intersect⇔ 〈GU ,GV 〉 pointwise fixes an open set (U ∩ V )

⇔ 〈GU ,GV 〉 has nonabelian centralizer in Diff

Continuity:

Let g t be a continuous family in Diff(R), U ⊂ R a ball.
G g t(U) = g tGUg−t

small t ⇔ 〈GU , g tGUg−t〉 has nonabelian centralizer
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This translates well under group homomorphisms

Given Φ : Diffr
c(R)→ Diffr

c(R), and U ⊂ R open.

Let U ′ = fix(Φ(GU))

Then Φ(g t)(U ′) = fix(Φ(g tGUg−t))

We use this to show that Φ is continuous on R-subgroups
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Finishing the proof

Now given Φ : Diffr
c(R)→ Diffr

c(R) we can show that

I Point stabilzers map to subgroups that fix a set of isolated
points.

I These vary continuously (nearby points → nearby fixed set)

I We can build continuous fi : R→ R, equivariant with respect
to Φ.

I Therefore Φ is topologically diagonal.

Replacing one or both R’s with S1 isn’t too hard.
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Answering Ghys’ question

Given Φ : Diffr
c(M1)→ Diffr

c(M2), where M2 = S1 or R.

We find a subgroup of Diffr
c(M) isomorphic to Diffr

c(R), and use
the fact that the restriction of Φ here is topologically diagonal into
Diff(M2).

In particular, it looks like an action on R
Diff2

c(R) has the property that each element has the same
centralizer as its square. Not so in Diff2

c(M).
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Things you can think about

I 2-manifolds. Might be able to use theory of fixed points of
commuting diffeomorphisms on surfaces [Franks, Handel,
Parwani,...]

I Compare Diff+(Sn) and Diff+(Sm) using finite order
elements.

I 3-manifolds?

I n-manifolds???
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