Homomorphisms between Diffeomorphism Groups Kathryn Mann University of Chicago May 5, 2012 ## A problem Given manifolds M_1 and M_2 , describe all homomorphisms $$\operatorname{Diff}^r_c(M_1) \to \operatorname{Diff}^p_c(M_2)$$ #### A problem Given manifolds M_1 and M_2 , describe all homomorphisms $$\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^p(M_2)$$ ▶ Diff $_c^r(M)$ = group of compactly supported C^r diffeomorphisms isotopic to the identity. ## A problem Given manifolds M_1 and M_2 , describe all homomorphisms $$\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^p(M_2)$$ - ▶ Diff $_c^r(M)$ = group of compactly supported C^r diffeomorphisms isotopic to the identity. - ► This is a simple group [Mather, Thurston], so any nontrivial homomorphism is necessarily injective. Let M_1 and M_2 be smooth manifolds. Let M_1 and M_2 be smooth manifolds. Theorem (Filipkiewicz, 1982) If \exists an isomorphism Φ : $\mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^s_c(M_2)$, then $M_1 \cong M_2$. Let M_1 and M_2 be smooth manifolds. #### Theorem (Filipkiewicz, 1982) If \exists an isomorphism Φ : $\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^s(M_2)$, then $M_1 \cong M_2$. Also, r = s and Φ is induced by a C^r diffeomorphism $f : M_1 \to M_2$. Let M_1 and M_2 be smooth manifolds. #### Theorem (Filipkiewicz, 1982) If \exists an isomorphism Φ : $\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^s(M_2)$, then $M_1 \cong M_2$. Also, r = s and Φ is induced by a C^r diffeomorphism $f : M_1 \to M_2$. "Induced" means $\Phi(g) = fgf^{-1}$ #### ... but not homomorphisms! Question (Ghys, 1991) Let M_1 and M_2 be closed manifolds. $\exists \text{ (injective) homomorphism Diff}^{\infty}(M_1)_0 \hookrightarrow \text{Diff}^{\infty}(M_2)_0$ $\stackrel{??}{\Rightarrow} \dim(M_1) \leq \dim(M_2)$ #### ... but not homomorphisms! # Question (Ghys, 1991) Let M₁ and M₂ be closed man Let M_1 and M_2 be closed manifolds. $$\exists \text{ (injective) homomorphism } \mathsf{Diff}^{\infty}(M_1)_0 \hookrightarrow \mathsf{Diff}^{\infty}(M_2)_0 \\ \stackrel{??}{\Rightarrow} \mathsf{dim}(M_1) \leq \mathsf{dim}(M_2)$$ ▶ Difff $^{\infty}(M)_0$ = identity component of group of C^{∞} diffeomorphisms on M. #### ... but not homomorphisms! # Question (Ghys, 1991) Let M_1 and M_2 be closed manifolds. $$\exists$$ (injective) homomorphism $\mathsf{Diff}^\infty(M_1)_0 \hookrightarrow \mathsf{Diff}^\infty(M_2)_0$ $\stackrel{??}{\Rightarrow} \mathsf{dim}(M_1) \leq \mathsf{dim}(M_2)$ - ▶ Difff[∞] $(M)_0$ = identity component of group of C^∞ diffeomorphisms on M. - ▶ Can also ask this for general boundaryless M and $Diff_c^r(M)$. ▶ M_1 an open submanifold of M_2 , inclusion $\mathrm{Diff}_c^r(M_1) \hookrightarrow \mathrm{Diff}_c^r(M_2)$ - ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$ - ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms. - ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$ - ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i: M_1 \to U_i \subset M_2$ diffeomorphisms. - ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$ - ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i: M_1 \to U_i \subset M_2$ diffeomorphisms. - ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$ - ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms. ▶ Special cases: $M_2 = M_1 \times N$, - ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$ - ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms. ▶ Special cases: $M_2 = M_1 \times N$, - ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$ - ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms. ▶ Special cases: $M_2 = M_1 \times N$, unit tangent bundle of M_1 ... A non-continuous homomorphism $\mathbb{R} \to \mathsf{Diff}^r_c(M)$: A non-continuous homomorphism $\mathbb{R} \to \mathrm{Diff}^r_c(M)$: $m{lpha}: \mathbb{R} ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism. A non-continuous homomorphism $\mathbb{R} \to \mathsf{Diff}^r_c(M)$: - $m{lpha}: \mathbb{R} ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism. - ψ^t compactly supported C^r flow on M. A non-continuous homomorphism $\mathbb{R} \to \mathsf{Diff}^r_c(M)$: - $m{lpha}: \mathbb{R} ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism. - ψ^t compactly supported C^r flow on M. $$t\mapsto \psi^{\alpha(t)}$$ A non-continuous homomorphism $\mathbb{R} \to \mathrm{Diff}_c^r(M)$: - $m{lpha}: \mathbb{R} ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism. - ψ^t compactly supported C^r flow on M. $$t\mapsto \psi^{\alpha(t)}$$ Can this happen with Diff instead of \mathbb{R} ? A non-continuous homomorphism $\mathbb{R} \to \mathrm{Diff}_c^r(M)$: - $m{lpha}: \mathbb{R} ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism. - ψ^t compactly supported C^r flow on M. $$t\mapsto \psi^{\alpha(t)}$$ Can this happen with Diff instead of \mathbb{R} ? How bad can injections $\mathrm{Diff}^r_c(M_1) \to \mathrm{Diff}^p_c(M_2)$ look? Theorem 1 (-) Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. #### Theorem 1 (-) Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal. #### Theorem 1 (-) Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal. (And if $r \leq p$, the maps f_i are C^r) #### Theorem 1 (-) Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal. (And if $r \leq p$, the maps f_i are C^r) #### Theorem 2 (-) Let M_1 be any manifold; r, p, M_2 as above. #### Theorem 1 (-) Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal. (And if $$r \leq p$$, the maps f_i are C^r) #### Theorem 2 (-) Let M_1 be any manifold; r, p, M_2 as above. $$\exists \ \Phi : \mathit{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2) \ \mathit{nontrivial homomorphism} \\ \Rightarrow \dim(M_1) = 1 \ \mathit{and} \ \Phi \ \mathit{is topologically diagonal}$$ #### Theorem 1 (-) Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi : \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal. (And if $r \leq p$, the maps f_i are C^r) #### Theorem 2 (-) Let M_1 be any manifold; r, p, M_2 as above. $\exists \ \Phi : \mathit{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2) \ \mathit{nontrivial homomorphism} \\ \Rightarrow \dim(M_1) = 1 \ \mathit{and} \ \Phi \ \mathit{is topologically diagonal}$ (This answers Ghys' question in the $dim(M_2) = 1$ case) #### Proof idea - theorem 1 ► Algebraic (group structure) data ↔ topological data #### Proof idea - theorem 1 ► Algebraic (group structure) data ↔ topological data Continuity results #### Proof idea - theorem 1 ► Algebraic (group structure) data ↔ topological data ► Continuity results ▶ Build *f*_i ## Topological data ↔ algebraic data Topology of the manifold \leftrightarrow group structure of *Diff* Topology of the manifold \leftrightarrow group structure of Diff Point $x \stackrel{?}{\leftrightarrow}$ Topology of the manifold \leftrightarrow group structure of *Diff* Point $x \stackrel{?}{\leftrightarrow} G_x$ point stablizer Topology of the manifold \leftrightarrow group structure of Diff Point $x \stackrel{?}{\leftrightarrow} G_x$ point stablizer Open set $U \leftrightarrow$ Topology of the manifold \leftrightarrow group structure of *Diff* Point $x \stackrel{?}{\leftrightarrow} G_x$ point stablizer Open set $U \leftrightarrow G^U$ group of diffeomorphisms fixing U pointwise. (G^{U} commutes with anything supported here) $(G^U$ commutes with anything supported here) #### **Fact** Let $G \subset \operatorname{Diff}^r_c(\mathbb{R})$ be nonabelian G has nonabelian centralizer $\Leftrightarrow G$ pointwise fixes open $U \subset \mathbb{R}$ $(G^U$ commutes with anything supported here) #### **Fact** Let $G \subset \mathrm{Diff}^r_c(\mathbb{R})$ be nonabelian G has nonabelian centralizer $\Leftrightarrow G$ pointwise fixes open $U \subset \mathbb{R}$ #### Proof techniques: - ▶ Hölder's theorem (free actions on \mathbb{R}) - ▶ Kopell's lemma (centralizers of C^2 diffeomorphisms) $(G^U$ commutes with anything supported here) #### **Fact** Let $G \subset \mathrm{Diff}^r_c(\mathbb{R})$ be nonabelian G has nonabelian centralizer $\Leftrightarrow G$ pointwise fixes open $U \subset \mathbb{R}$ #### Proof techniques: - ▶ Hölder's theorem (free actions on \mathbb{R}) - ▶ Kopell's lemma (centralizers of C^2 diffeomorphisms) - *These also [mostly] work for S^1 , but not for general $M!^*$ For U, V open subsets of $\mathbb R$ $U, V \text{ intersect} \Leftrightarrow \langle G^U, G^V \rangle \text{ pointwise fixes an open set } (U \cap V)$ $\Leftrightarrow \langle G^U, G^V \rangle \text{ has nonabelian centralizer in } \mathsf{Diff}$ For U, V open subsets of $\mathbb R$ $$U,V$$ intersect $\Leftrightarrow \langle G^U,G^V \rangle$ pointwise fixes an open set $(U\cap V)$ $\Leftrightarrow \langle G^U,G^V \rangle$ has nonabelian centralizer in Diff ### Continuity: For U, V open subsets of \mathbb{R} $$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$ $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$ ### Continuity: Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball. For U, V open subsets of \mathbb{R} $$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$ $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$ ### Continuity: Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$ For U, V open subsets of \mathbb{R} $$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$ $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$ ### Continuity: Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$ $$-(9)$$ For U, V open subsets of \mathbb{R} $$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$ $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$ ### Continuity: Let g^t be a continuous family in $\text{Diff}(\mathbb{R})$, $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$ $$-(4)$$ small $t \Leftrightarrow \langle G^U, g^t G^U g^{-t} \rangle$ has nonabelian centralizer For U, V open subsets of \mathbb{R} $$U, V \text{ intersect} \Leftrightarrow \langle G^U, G^V \rangle \text{ pointwise fixes an open set } (U \cap V)$$ $\Leftrightarrow \langle G^U, G^V \rangle \text{ has nonabelian centralizer in } \mathsf{Diff}$ #### Continuity: Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$ small $t \Leftrightarrow \langle G^U, g^t G^U g^{-t} \rangle$ has nonabelian centralizer Given $\Phi: \mathrm{Diff}^r_c(\mathbb{R}) \to \mathrm{Diff}^r_c(\mathbb{R})$, and $U \subset \mathbb{R}$ open. Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open. Let $$U' = fix(\Phi(G^U))$$ Given $$\Phi: \mathrm{Diff}_{\mathcal{C}}^r(\mathbb{R}) \to \mathrm{Diff}_{\mathcal{C}}^r(\mathbb{R})$$, and $U \subset \mathbb{R}$ open. Let $$U' = fix(\Phi(G^U))$$ Then $$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$ Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open. Let $$U' = fix(\Phi(G^U))$$ Then $$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$ Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open. Let $$U' = fix(\Phi(G^U))$$ Then $$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$ Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open. Let $$U' = fix(\Phi(G^U))$$ Then $$\Phi(g^t)(U') = fix(\Phi(g^tG^Ug^{-t}))$$ Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open. Let $$U' = fix(\Phi(G^U))$$ Then $$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$ Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open. Let $$U' = fix(\Phi(G^U))$$ Then $$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$ Now given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$ we can show that Point stabilzers map to subgroups that fix a set of isolated points. Now given $\Phi: \mathsf{Diff}^r_c(\mathbb{R}) \to \mathsf{Diff}^r_c(\mathbb{R})$ we can show that - ▶ Point stabilzers map to subgroups that fix a set of isolated points. - ► These vary continuously (nearby points → nearby fixed set) Now given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$ we can show that - ▶ Point stabilzers map to subgroups that fix a set of isolated points. - ► These vary continuously (nearby points → nearby fixed set) - ▶ We can build continuous $f_i : \mathbb{R} \to \mathbb{R}$, equivariant with respect to Φ . Now given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$ we can show that - ▶ Point stabilzers map to subgroups that fix a set of isolated points. - ► These vary continuously (nearby points → nearby fixed set) - ▶ We can build continuous $f_i : \mathbb{R} \to \mathbb{R}$, equivariant with respect to Φ . - Therefore Φ is topologically diagonal. Now given $\Phi: \mathsf{Diff}^r_c(\mathbb{R}) \to \mathsf{Diff}^r_c(\mathbb{R})$ we can show that - ▶ Point stabilzers map to subgroups that fix a set of isolated points. - ► These vary continuously (nearby points → nearby fixed set) - ▶ We can build continuous $f_i : \mathbb{R} \to \mathbb{R}$, equivariant with respect to Φ . - Therefore Φ is topologically diagonal. Replacing one or both \mathbb{R} 's with S^1 isn't too hard. Given $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^r_c(M_2)$, where $M_2 = S^1$ or \mathbb{R} . Given $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^r_c(M_2)$, where $M_2 = S^1$ or \mathbb{R} . We find a subgroup of $\mathrm{Diff}_c^r(M)$ isomorphic to $\mathrm{Diff}_c^r(\mathbb{R})$, and use the fact that the restriction of Φ here is topologically diagonal into $\mathrm{Diff}(M_2)$. Given $\Phi : \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^r_c(M_2)$, where $M_2 = S^1$ or \mathbb{R} . We find a subgroup of $\mathrm{Diff}_c^r(M)$ isomorphic to $\mathrm{Diff}_c^r(\mathbb{R})$, and use the fact that the restriction of Φ here is topologically diagonal into $\mathrm{Diff}(M_2)$. In particular, it looks like an action on $\mathbb R$ Given $\Phi : \mathrm{Diff}_c^r(M_1) \to \mathrm{Diff}_c^r(M_2)$, where $M_2 = S^1$ or \mathbb{R} . We find a subgroup of $\mathrm{Diff}_c^r(M)$ isomorphic to $\mathrm{Diff}_c^r(\mathbb{R})$, and use the fact that the restriction of Φ here is topologically diagonal into $\mathrm{Diff}(M_2)$. In particular, it looks like an action on \mathbb{R} Diff $_c^2(\mathbb{R})$ has the property that each element has the same centralizer as its square. Not so in Diff $_c^2(M)$. 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...] - 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...] - ▶ Compare $Diff_+(S^n)$ and $Diff_+(S^m)$ using finite order elements. - 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...] - ▶ Compare $Diff_+(S^n)$ and $Diff_+(S^m)$ using finite order elements. - 3-manifolds? - 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...] - ▶ Compare $Diff_+(S^n)$ and $Diff_+(S^m)$ using finite order elements. - 3-manifolds? - n-manifolds???