Homomorphisms between Diffeomorphism Groups

Kathryn Mann

University of Chicago

May 5, 2012

A problem

Given manifolds M_1 and M_2 , describe all homomorphisms

$$\operatorname{Diff}^r_c(M_1) \to \operatorname{Diff}^p_c(M_2)$$

A problem

Given manifolds M_1 and M_2 , describe all homomorphisms

$$\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^p(M_2)$$

▶ Diff $_c^r(M)$ = group of compactly supported C^r diffeomorphisms isotopic to the identity.

A problem

Given manifolds M_1 and M_2 , describe all homomorphisms

$$\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^p(M_2)$$

- ▶ Diff $_c^r(M)$ = group of compactly supported C^r diffeomorphisms isotopic to the identity.
- ► This is a simple group [Mather, Thurston], so any nontrivial homomorphism is necessarily injective.

Let M_1 and M_2 be smooth manifolds.

Let M_1 and M_2 be smooth manifolds.

Theorem (Filipkiewicz, 1982)

If \exists an isomorphism Φ : $\mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^s_c(M_2)$, then $M_1 \cong M_2$.

Let M_1 and M_2 be smooth manifolds.

Theorem (Filipkiewicz, 1982)

If \exists an isomorphism Φ : $\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^s(M_2)$, then $M_1 \cong M_2$. Also, r = s and Φ is induced by a C^r diffeomorphism $f : M_1 \to M_2$.

Let M_1 and M_2 be smooth manifolds.

Theorem (Filipkiewicz, 1982)

If \exists an isomorphism Φ : $\operatorname{Diff}_c^r(M_1) \to \operatorname{Diff}_c^s(M_2)$, then $M_1 \cong M_2$. Also, r = s and Φ is induced by a C^r diffeomorphism $f : M_1 \to M_2$.

"Induced" means $\Phi(g) = fgf^{-1}$

... but not homomorphisms!

Question (Ghys, 1991)
Let M_1 and M_2 be closed manifolds. $\exists \text{ (injective) homomorphism Diff}^{\infty}(M_1)_0 \hookrightarrow \text{Diff}^{\infty}(M_2)_0$ $\stackrel{??}{\Rightarrow} \dim(M_1) \leq \dim(M_2)$

... but not homomorphisms!

Question (Ghys, 1991) Let M₁ and M₂ be closed man

Let M_1 and M_2 be closed manifolds.

$$\exists \text{ (injective) homomorphism } \mathsf{Diff}^{\infty}(M_1)_0 \hookrightarrow \mathsf{Diff}^{\infty}(M_2)_0 \\ \stackrel{??}{\Rightarrow} \mathsf{dim}(M_1) \leq \mathsf{dim}(M_2)$$

▶ Difff $^{\infty}(M)_0$ = identity component of group of C^{∞} diffeomorphisms on M.

... but not homomorphisms!

Question (Ghys, 1991)

Let M_1 and M_2 be closed manifolds.

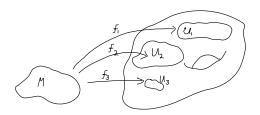
$$\exists$$
 (injective) homomorphism $\mathsf{Diff}^\infty(M_1)_0 \hookrightarrow \mathsf{Diff}^\infty(M_2)_0$
 $\stackrel{??}{\Rightarrow} \mathsf{dim}(M_1) \leq \mathsf{dim}(M_2)$

- ▶ Difff[∞] $(M)_0$ = identity component of group of C^∞ diffeomorphisms on M.
- ▶ Can also ask this for general boundaryless M and $Diff_c^r(M)$.

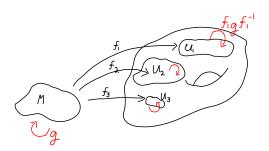
▶ M_1 an open submanifold of M_2 , inclusion $\mathrm{Diff}_c^r(M_1) \hookrightarrow \mathrm{Diff}_c^r(M_2)$

- ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$
- ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms.

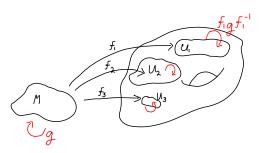
- ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$
- ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i: M_1 \to U_i \subset M_2$ diffeomorphisms.



- ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$
- ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i: M_1 \to U_i \subset M_2$ diffeomorphisms.

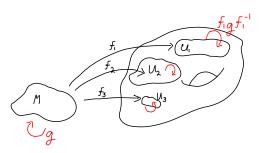


- ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$
- ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms.



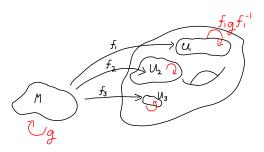
▶ Special cases: $M_2 = M_1 \times N$,

- ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$
- ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms.



▶ Special cases: $M_2 = M_1 \times N$,

- ▶ M_1 an open submanifold of M_2 , inclusion $\operatorname{Diff}_c^r(M_1) \hookrightarrow \operatorname{Diff}_c^r(M_2)$
- ▶ Generalization: Topologically diagonal embedding $U_i \subset M_2$ disjoint open sets, $f_i : M_1 \to U_i \subset M_2$ diffeomorphisms.



▶ Special cases: $M_2 = M_1 \times N$, unit tangent bundle of M_1 ...

A non-continuous homomorphism $\mathbb{R} \to \mathsf{Diff}^r_c(M)$:

A non-continuous homomorphism $\mathbb{R} \to \mathrm{Diff}^r_c(M)$:

 $m{lpha}: \mathbb{R}
ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism.

A non-continuous homomorphism $\mathbb{R} \to \mathsf{Diff}^r_c(M)$:

- $m{lpha}: \mathbb{R}
 ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism.
- ψ^t compactly supported C^r flow on M.

A non-continuous homomorphism $\mathbb{R} \to \mathsf{Diff}^r_c(M)$:

- $m{lpha}: \mathbb{R}
 ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism.
- ψ^t compactly supported C^r flow on M.

$$t\mapsto \psi^{\alpha(t)}$$

A non-continuous homomorphism $\mathbb{R} \to \mathrm{Diff}_c^r(M)$:

- $m{lpha}: \mathbb{R}
 ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism.
- ψ^t compactly supported C^r flow on M.

$$t\mapsto \psi^{\alpha(t)}$$

Can this happen with Diff instead of \mathbb{R} ?

A non-continuous homomorphism $\mathbb{R} \to \mathrm{Diff}_c^r(M)$:

- $m{lpha}: \mathbb{R}
 ightarrow \mathbb{R}$ any non-continuous, injective, additive group homomorphism.
- ψ^t compactly supported C^r flow on M.

$$t\mapsto \psi^{\alpha(t)}$$

Can this happen with Diff instead of \mathbb{R} ? How bad can injections $\mathrm{Diff}^r_c(M_1) \to \mathrm{Diff}^p_c(M_2)$ look?

Theorem 1 (-)

Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds.

Theorem 1 (-)

Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal.

Theorem 1 (-)

Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal.

(And if $r \leq p$, the maps f_i are C^r)

Theorem 1 (-)

Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal.

(And if $r \leq p$, the maps f_i are C^r)

Theorem 2 (-)

Let M_1 be any manifold; r, p, M_2 as above.

Theorem 1 (-)

Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal.

(And if
$$r \leq p$$
, the maps f_i are C^r)

Theorem 2 (-)

Let M_1 be any manifold; r, p, M_2 as above.

$$\exists \ \Phi : \mathit{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2) \ \mathit{nontrivial homomorphism} \\ \Rightarrow \dim(M_1) = 1 \ \mathit{and} \ \Phi \ \mathit{is topologically diagonal}$$

Theorem 1 (-)

Let $r \geq 3$, $p \geq 2$; M_1 and M_2 1-manifolds. Every homomorphism $\Phi : \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2)$ is topologically diagonal.

(And if $r \leq p$, the maps f_i are C^r)

Theorem 2 (-)

Let M_1 be any manifold; r, p, M_2 as above.

 $\exists \ \Phi : \mathit{Diff}^r_c(M_1) \to \mathsf{Diff}^p_c(M_2) \ \mathit{nontrivial homomorphism} \\ \Rightarrow \dim(M_1) = 1 \ \mathit{and} \ \Phi \ \mathit{is topologically diagonal}$

(This answers Ghys' question in the $dim(M_2) = 1$ case)

Proof idea - theorem 1

► Algebraic (group structure) data ↔ topological data

Proof idea - theorem 1

► Algebraic (group structure) data ↔ topological data

Continuity results

Proof idea - theorem 1

► Algebraic (group structure) data ↔ topological data

► Continuity results

▶ Build *f*_i

Topological data ↔ algebraic data

Topology of the manifold \leftrightarrow group structure of *Diff*

Topology of the manifold \leftrightarrow group structure of Diff

Point $x \stackrel{?}{\leftrightarrow}$

Topology of the manifold \leftrightarrow group structure of *Diff*

Point $x \stackrel{?}{\leftrightarrow} G_x$ point stablizer

Topology of the manifold \leftrightarrow group structure of Diff

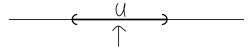
Point $x \stackrel{?}{\leftrightarrow} G_x$ point stablizer

Open set $U \leftrightarrow$

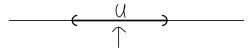
Topology of the manifold \leftrightarrow group structure of *Diff*

Point $x \stackrel{?}{\leftrightarrow} G_x$ point stablizer

Open set $U \leftrightarrow G^U$ group of diffeomorphisms fixing U pointwise.



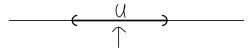
(G^{U} commutes with anything supported here)



 $(G^U$ commutes with anything supported here)

Fact

Let $G \subset \operatorname{Diff}^r_c(\mathbb{R})$ be nonabelian G has nonabelian centralizer $\Leftrightarrow G$ pointwise fixes open $U \subset \mathbb{R}$



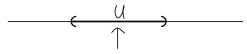
 $(G^U$ commutes with anything supported here)

Fact

Let $G \subset \mathrm{Diff}^r_c(\mathbb{R})$ be nonabelian G has nonabelian centralizer $\Leftrightarrow G$ pointwise fixes open $U \subset \mathbb{R}$

Proof techniques:

- ▶ Hölder's theorem (free actions on \mathbb{R})
- ▶ Kopell's lemma (centralizers of C^2 diffeomorphisms)



 $(G^U$ commutes with anything supported here)

Fact

Let $G \subset \mathrm{Diff}^r_c(\mathbb{R})$ be nonabelian G has nonabelian centralizer $\Leftrightarrow G$ pointwise fixes open $U \subset \mathbb{R}$

Proof techniques:

- ▶ Hölder's theorem (free actions on \mathbb{R})
- ▶ Kopell's lemma (centralizers of C^2 diffeomorphisms)
 - *These also [mostly] work for S^1 , but not for general $M!^*$

For U, V open subsets of $\mathbb R$

 $U, V \text{ intersect} \Leftrightarrow \langle G^U, G^V \rangle \text{ pointwise fixes an open set } (U \cap V)$ $\Leftrightarrow \langle G^U, G^V \rangle \text{ has nonabelian centralizer in } \mathsf{Diff}$

For U, V open subsets of $\mathbb R$

$$U,V$$
 intersect $\Leftrightarrow \langle G^U,G^V \rangle$ pointwise fixes an open set $(U\cap V)$
 $\Leftrightarrow \langle G^U,G^V \rangle$ has nonabelian centralizer in Diff

Continuity:

For U, V open subsets of \mathbb{R}

$$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$
 $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$

Continuity:

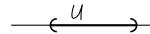
Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball.

For U, V open subsets of \mathbb{R}

$$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$
 $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$

Continuity:

Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$



For U, V open subsets of \mathbb{R}

$$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$
 $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$

Continuity:

Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$

$$-(9)$$

For U, V open subsets of \mathbb{R}

$$U, V \ intersect \Leftrightarrow \langle G^U, G^V \rangle \ pointwise fixes an open set $(U \cap V)$
 $\Leftrightarrow \langle G^U, G^V \rangle \ has nonabelian centralizer in Diff$$$

Continuity:

Let g^t be a continuous family in $\text{Diff}(\mathbb{R})$, $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$

$$-(4)$$

small $t \Leftrightarrow \langle G^U, g^t G^U g^{-t} \rangle$ has nonabelian centralizer

For U, V open subsets of \mathbb{R}

$$U, V \text{ intersect} \Leftrightarrow \langle G^U, G^V \rangle \text{ pointwise fixes an open set } (U \cap V)$$

 $\Leftrightarrow \langle G^U, G^V \rangle \text{ has nonabelian centralizer in } \mathsf{Diff}$

Continuity:

Let g^t be a continuous family in Diff(\mathbb{R}), $U \subset \mathbb{R}$ a ball. $G^{g^t(U)} = g^t G^U g^{-t}$

small $t \Leftrightarrow \langle G^U, g^t G^U g^{-t} \rangle$ has nonabelian centralizer

Given $\Phi: \mathrm{Diff}^r_c(\mathbb{R}) \to \mathrm{Diff}^r_c(\mathbb{R})$, and $U \subset \mathbb{R}$ open.

Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open.

Let
$$U' = fix(\Phi(G^U))$$

Given
$$\Phi: \mathrm{Diff}_{\mathcal{C}}^r(\mathbb{R}) \to \mathrm{Diff}_{\mathcal{C}}^r(\mathbb{R})$$
, and $U \subset \mathbb{R}$ open.

Let
$$U' = fix(\Phi(G^U))$$

Then
$$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$

Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open.

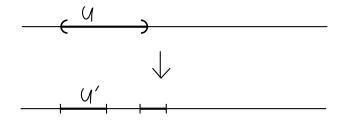
Let
$$U' = fix(\Phi(G^U))$$

Then
$$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$

Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open.

Let
$$U' = fix(\Phi(G^U))$$

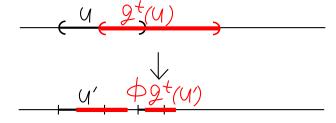
Then
$$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$



Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open.

Let
$$U' = fix(\Phi(G^U))$$

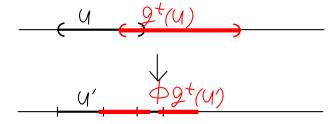
Then
$$\Phi(g^t)(U') = fix(\Phi(g^tG^Ug^{-t}))$$



Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open.

Let
$$U' = fix(\Phi(G^U))$$

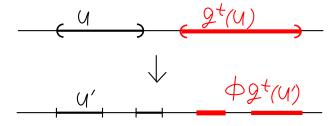
Then
$$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$



Given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$, and $U \subset \mathbb{R}$ open.

Let
$$U' = fix(\Phi(G^U))$$

Then
$$\Phi(g^t)(U') = \text{fix}(\Phi(g^t G^U g^{-t}))$$



Now given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$ we can show that

Point stabilzers map to subgroups that fix a set of isolated points.

Now given $\Phi: \mathsf{Diff}^r_c(\mathbb{R}) \to \mathsf{Diff}^r_c(\mathbb{R})$ we can show that

- ▶ Point stabilzers map to subgroups that fix a set of isolated points.
- ► These vary continuously (nearby points → nearby fixed set)

Now given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$ we can show that

- ▶ Point stabilzers map to subgroups that fix a set of isolated points.
- ► These vary continuously (nearby points → nearby fixed set)
- ▶ We can build continuous $f_i : \mathbb{R} \to \mathbb{R}$, equivariant with respect to Φ .

Now given $\Phi: \mathrm{Diff}_c^r(\mathbb{R}) \to \mathrm{Diff}_c^r(\mathbb{R})$ we can show that

- ▶ Point stabilzers map to subgroups that fix a set of isolated points.
- ► These vary continuously (nearby points → nearby fixed set)
- ▶ We can build continuous $f_i : \mathbb{R} \to \mathbb{R}$, equivariant with respect to Φ .
- Therefore Φ is topologically diagonal.

Now given $\Phi: \mathsf{Diff}^r_c(\mathbb{R}) \to \mathsf{Diff}^r_c(\mathbb{R})$ we can show that

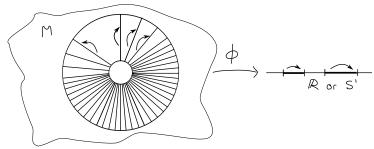
- ▶ Point stabilzers map to subgroups that fix a set of isolated points.
- ► These vary continuously (nearby points → nearby fixed set)
- ▶ We can build continuous $f_i : \mathbb{R} \to \mathbb{R}$, equivariant with respect to Φ .
- Therefore Φ is topologically diagonal.

Replacing one or both \mathbb{R} 's with S^1 isn't too hard.

Given $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^r_c(M_2)$, where $M_2 = S^1$ or \mathbb{R} .

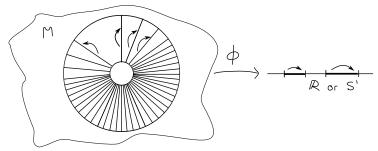
Given $\Phi: \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^r_c(M_2)$, where $M_2 = S^1$ or \mathbb{R} .

We find a subgroup of $\mathrm{Diff}_c^r(M)$ isomorphic to $\mathrm{Diff}_c^r(\mathbb{R})$, and use the fact that the restriction of Φ here is topologically diagonal into $\mathrm{Diff}(M_2)$.



Given $\Phi : \mathsf{Diff}^r_c(M_1) \to \mathsf{Diff}^r_c(M_2)$, where $M_2 = S^1$ or \mathbb{R} .

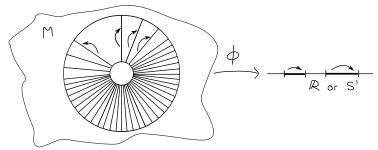
We find a subgroup of $\mathrm{Diff}_c^r(M)$ isomorphic to $\mathrm{Diff}_c^r(\mathbb{R})$, and use the fact that the restriction of Φ here is topologically diagonal into $\mathrm{Diff}(M_2)$.



In particular, it looks like an action on $\mathbb R$

Given $\Phi : \mathrm{Diff}_c^r(M_1) \to \mathrm{Diff}_c^r(M_2)$, where $M_2 = S^1$ or \mathbb{R} .

We find a subgroup of $\mathrm{Diff}_c^r(M)$ isomorphic to $\mathrm{Diff}_c^r(\mathbb{R})$, and use the fact that the restriction of Φ here is topologically diagonal into $\mathrm{Diff}(M_2)$.



In particular, it looks like an action on \mathbb{R} Diff $_c^2(\mathbb{R})$ has the property that each element has the same centralizer as its square. Not so in Diff $_c^2(M)$.

 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...]

- 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...]
- ▶ Compare $Diff_+(S^n)$ and $Diff_+(S^m)$ using finite order elements.

- 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...]
- ▶ Compare $Diff_+(S^n)$ and $Diff_+(S^m)$ using finite order elements.
- 3-manifolds?

- 2-manifolds. Might be able to use theory of fixed points of commuting diffeomorphisms on surfaces [Franks, Handel, Parwani,...]
- ▶ Compare $Diff_+(S^n)$ and $Diff_+(S^m)$ using finite order elements.
- 3-manifolds?
- n-manifolds???